Using smart meter data to improve quality of voltage delivery in public electricity distribution networks
(Paper No. 21)

Presented by Professor Akhtar Kalam

HEALTH, ENGINEERING AND SCIENCE

VICTORIA UNIVERSITY
MELBOURNE AUSTRALIA

Industry partner:
Jemena Electricity Networks

09-11 Dec, 2012
Saudi Arabia-Jeddah
Agenda

• Background of the research project
• What has been revealed so far
• Conclusions
• Future research direction
LV Voltage Delivery – Current Situation

- Australian electricity distribution companies are regulated by the National Electricity Rules and state based regulations for the quality of electricity they deliver to the customer supply points – such as voltage magnitude.
- Voltage non-compliance has high societal cost as it affects efficiency and life expectancy of electrical equipment.
- Voltage magnitude is measured at strategic locations on the network but not at individual customer premise.
- Electricity distribution companies normally react to customer complaints of over and under voltages and take corrective actions.
Smart Meter Rollout in Victoria, Australia

- Victorian state government in Australia mandated the rollout of smart meters
- The Advanced Metering Infrastructure (AMI) Program started in 2009 and scheduled for completion in 2013
- Mandated program covers all customers consuming under 160MWhr per annum
- Smart meters linked by two-way communication network to a central back office system
- 30-minute energy consumption as well as power quality events such as over and under voltage
- Voltage monitoring now down to individual customer point of supply
Snapshots of Under & Over Voltage Events

- The data analysis was carried out on approximately 100,000 smart meters installed on Jemena Electricity Networks (JEN, with about 315,000 customers)
- Graph shows over and under voltage events recorded by smart meters over six consecutive days in Feb 2012, with X-axis being the maximum temperature on each day
- Overvoltage an on-going issue but undervoltage also arises at high ambient temperature days
- 260MByte of event data for 1-month of overvoltage and 3-month of undervoltage events
- The volume of event data requires efficient data manipulation and analysis
Under & Over Voltage Events – Start Times

- Majority of undervoltage start times between noon to 8pm, coinciding with peak electricity usage on high temperature days
- Highest number of overvoltage starts between 8pm to 2am, coinciding with low electricity usage
- There are also significant overvoltage starts at other times. Could this be due to photovoltaic generation?
Under & Over Voltage Events – Event Duration

- Longest undervoltage event lasted nearly 15 hours
- Majority of undervoltage events lasted between half an hour to eight hours
- Longest voltage event lasted nearly 45 hours
- Majority of overvoltage events lasted between 2 to 15 hours.
Under & Over Voltage Events – Extreme Voltages

- Smart meter event records include lowest (or highest) voltage during the event duration
- Majority of minimum voltages are just below the regulatory threshold of 230V-6% (216V)
- Majority of highest voltage excursion are just above the regulatory threshold of 230V+10% (253V)
- Adjustment of distribution transformer tap positions or zone substation voltage regulation set points could be an effective solution
Common Under and Over Voltage Sites

• 12,251 sites experienced overvoltage over the 6-day period
• 6,131 sites experienced undervoltage over the same 6-day period
• 88 sites have experienced both over and under voltage
• These sites cannot be rectified by adjusting the upstream supply voltages
• Analysis indicates that some sites are supplied from overloaded distribution substations requiring network reinforcement
• Further investigation is underway
Impact of Rooftop Solar Installations

- Analysis of overvoltage event start times indicates there are higher portion of PV sites giving rise to overvoltage events between 8am to 2pm.
- This could suggest PV generation is contributing to overvoltage issues, although still moderate at this stage.
- Graph shows a PV household 30-minute usage profile. Channel 2 captures net energy exported back into the grid.
- Even on a reasonably sunny winter day PV reduced household consumption and exported net energy back into the grid.

<table>
<thead>
<tr>
<th>Start Time</th>
<th>Total number of OV events generated by PV sites</th>
<th>Total number of OV events</th>
<th>% of PV sites OV events to total number of OV events</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00-02:00</td>
<td>228</td>
<td>5718</td>
<td>4.0%</td>
</tr>
<tr>
<td>02:00-04:00</td>
<td>63</td>
<td>2246</td>
<td>2.8%</td>
</tr>
<tr>
<td>04:00-06:00</td>
<td>57</td>
<td>2223</td>
<td>2.6%</td>
</tr>
<tr>
<td>06:00-08:00</td>
<td>116</td>
<td>3399</td>
<td>3.4%</td>
</tr>
<tr>
<td>08:00-10:00</td>
<td>122</td>
<td>2415</td>
<td>5.1%</td>
</tr>
<tr>
<td>10:00-12:00</td>
<td>92</td>
<td>1356</td>
<td>6.8%</td>
</tr>
<tr>
<td>12:00-14:00</td>
<td>59</td>
<td>1270</td>
<td>4.6%</td>
</tr>
<tr>
<td>14:00-16:00</td>
<td>138</td>
<td>3343</td>
<td>4.1%</td>
</tr>
<tr>
<td>16:00-18:00</td>
<td>70</td>
<td>2570</td>
<td>2.7%</td>
</tr>
<tr>
<td>18:00-20:00</td>
<td>48</td>
<td>1887</td>
<td>2.5%</td>
</tr>
<tr>
<td>20:00-22:00</td>
<td>113</td>
<td>3718</td>
<td>3.0%</td>
</tr>
<tr>
<td>22:00-00:00</td>
<td>283</td>
<td>8092</td>
<td>3.5%</td>
</tr>
</tbody>
</table>

Red bars indicate net export.
Linking Sites to Upstream Supply Substations

- Network connectivity – from zone substation through to distribution substation and to individual customer – is provided in Geographical Information System (GIS)
- Linking smart meter voltage quality data with GIS data allows clusters of under and overvoltage sites (supplied from same sources) to be identified
- Review of voltage regulation and off load tap settings can then proceed

Diagram:

- Zone Substation
 - Distribution Substation 1
 - With off-load taps
 - OV site 1
 - OV site 2
 - OV site 3
 - Distribution Substation 2
 - Distribution Substation n

With automatic voltage regulation and on-load transformer tap changing
Conclusions

• Mass rollout of smart meters with voltage quality monitoring capability has allowed electricity supply authorities to adopt a proactive approach for voltage quality compliance
• The large volume of smart meter voltage quality data requires efficient data analysis techniques to extract relevant actionable information
• Research work presented in this paper has allowed an overall picture to be developed
 – Relationship of under and over voltage events to ambient temperatures
 – Severity of voltage events in the form of durations and extreme voltages
 – Start times of under and over voltage events
 – Relationship between over voltage events and domestic photovoltaic installations
 – Linking voltage events to upstream supply substations
• These observations will assist supply authorities to prioritise its voltage quality rectification program
Future Research Direction

• Future research effort will focus on identifying the possible causes and rectification of the voltage quality issue
 – Linking voltage quality problem to incorrect transformer tap setting of upstream distribution substations
 – Linking voltage quality problem to incorrect voltage regulation settings of upstream zone substations
 – Linking voltage quality problem to overloaded distribution circuits and substations
 – Linking voltage quality problem to phase unbalance
• Identifying the impact of domestic photovoltaic installations on voltage quality
 – Modelling the maximum PV penetration without violating voltage quality regulation
• Develop innovative voltage control strategy that will maximise the penetration of embedded generation on the distribution networks
NAME: Peter K.C. Wong / Professor Akhtar Kalam
SCHOOL OF HEALTH, ENGINEERING AND SCIENCE

PHONE +61 3 9919 5918 / +61 3 9919 5504
FAX +61 3 9919 4908
EMAIL kaicheung.wong@live.vu.edu.au / akhtar.kalam@vu.edu.au